Multi-GPU approach to global induction of classification trees for large-scale data mining
نویسندگان
چکیده
Abstract This paper concerns the evolutionary induction of decision trees (DT) for large-scale data. Such a global approach is one alternatives to top-down inducers. It searches tree structure and tests simultaneously thus gives improvements in prediction size resulting classifiers many situations. However, it population-based iterative that can be too computationally demanding apply big data mining directly. The demonstrates this barrier overcome by smart distributed/parallel processing. Moreover, we ask question whether truly compete with greedy systems For purpose, propose novel multi-GPU approach. incorporates knowledge DT algorithm parallelization together efficient utilization memory computing GPU’s resources. are performed on CPU, while fitness calculations delegated GPUs. Data-parallel decomposition strategy CUDA framework applied. Experimental validation both artificial real-life datasets. In cases, obtained acceleration very satisfactory. solution able process even billions instances few hours single workstation equipped 4 impact characteristics (size dimension) convergence speedup search also shown. When number GPUs grows, nearly linear scalability observed what suggests boundaries fading.
منابع مشابه
a new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولEvolutionary induction of a decision tree for large-scale data: a GPU-based approach
Evolutionary induction of decision trees is an emerging alternative to greedy top-down approaches. Its growing popularity results from good prediction performance and less complex output trees. However, one of the major drawbacks associated with the application of evolutionary algorithms is the tree induction time, especially for large-scale data. In the paper, we design and implement a graphic...
متن کاملthe clustering and classification data mining techniques in insurance fraud detection:the case of iranian car insurance
با توجه به گسترش روز افزون تقلب در حوزه بیمه به خصوص در بخش بیمه اتومبیل و تبعات منفی آن برای شرکت های بیمه، به کارگیری روش های مناسب و کارآمد به منظور شناسایی و کشف تقلب در این حوزه امری ضروری است. درک الگوی موجود در داده های مربوط به مطالبات گزارش شده گذشته می تواند در کشف واقعی یا غیرواقعی بودن ادعای خسارت، مفید باشد. یکی از متداول ترین و پرکاربردترین راه های کشف الگوی داده ها استفاده از ر...
Optimum Ensemble Classification for Fully Polarimetric SAR Data Using Global-Local Classification Approach
In this paper, a proposed ensemble classification for fully polarimetric synthetic aperture radar (PolSAR) data using a global-local classification approach is presented. In the first step, to perform the global classification, the training feature space is divided into a specified number of clusters. In the next step to carry out the local classification over each of these clusters, which cont...
متن کاملdata mining rules and classification methods in insurance: the case of collision insurance
assigning premium to the insurance contract in iran mostly has based on some old rules have been authorized by government, in such a situation predicting premium by analyzing database and it’s characteristics will be definitely such a big mistake. therefore the most beneficial information one can gathered from these data is the amount of loss happens during one contract to predicting insurance ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Intelligence
سال: 2021
ISSN: ['0924-669X', '1573-7497']
DOI: https://doi.org/10.1007/s10489-020-01952-5